

FLAVONOL 3-O-NEOHESPERIDOSIDES OF *NERISYRENIA*
LINEARIFOLIA AND *N. GRACILIS*

JOHN D. BACON and TOM J. MABRY

Cell Research Institute and Department of Botany, University of Texas at Austin, Austin, TX 78712, U.S.A.

and

J. B. HARBORNE

Phytochemical Unit, Plant Science Laboratories, The University, Whiteknights, Reading RG6 2AS

(Received 6 June 1974)

Key Word Index—*Nerisyrenia linearifolia*; *N. gracilis*; Cruciferae; flavonol 3-O-neohesperidosides.

Flavonol 3-O-neohesperidosides are rare in nature. Indeed, only one, quercetin 3-O-neohesperidoside, has been unequivocally identified to date [1] while the kaempferol derivative has been provisionally identified [2]. During the course of a chemosystematic study of the genus *Nerisyrenia*, the 3-O-neohesperidosides of quercetin (**1**), kaempferol (**2**) and isorhamnetin (**3**) have been isolated and identified. This is the first report of the latter flavonoid, **3**, as a natural product, and all compounds are reported for the first time from the Cruciferae.

The standard set of six UV spectra [3] for each compound indicated that all had hydroxyl groups at positions 5, 7 and 4'. The presence of *B*-ring *ortho*-oxygen functions in **1** and **3** was indicated by the presence of a shoulder on the long wave length side of band II in the MeOH spectrum of each compound. An *o*-dihydroxyl group was established for **1** by the 82 nm bathochromic shift of band I in AlCl₃ (relative to band I in MeOH) followed by a hypsochromic shift of 35 nm on addition of HCl; also, the bathochromic shift of 20 nm for band I in NaOAc/H₃BO₃ (relative to band I in MeOH) confirmed the presence of a 3', 4'-*o*-hydroxyl system.

Acid hydrolysis of each compound afforded the respective aglycone (co-chromatography with an authentic sample by PC and UV spectra) and glucose and rhamnose in a 1:1 ratio (GLC of the trimethylsilylated sugars) [3]. Moreover, comparison

of the UV spectra for the natural products with those for the aglycone indicated that in all three compounds, the disaccharide must be *O*-linked at C₃. Hydrolysis with β -glucosidase failed for each natural product, indicating that in each the rhamnose was terminal in the disaccharide. The NMR spectra of the trimethylsilyl ethers [3] of **1** and **2** readily confirmed rhamnose to be one of the sugars in each by the presence of a 3 proton doublet (*J* 6.0) at δ 0.83-0.85 ppm; in addition a 1→2 interglycosidic linkage was indicated for each compound by the presence of a singlet at 4.81-4.83 attributable to the rhamnose H-1 proton [3] and a glucose H-1 proton signal at 5.75 ppm. These data confirmed that 1→6 linkages were not present in any of the three rhamnoglucosides. The identification of the disaccharide was subsequently established by treating each compound with H₂O₂; in each case, the oxidative cleavage gave a disaccharide identical with authentic neohesperidose (co-chromatography and co-electrophoresis).

EXPERIMENTAL

Voucher specimens for *N. linearifolia* (Wats.) Greene (*Bacon and Hartman 1355* collected from U.S.A.: TEXAS: Culberson Co.: 7.1 mi SE of jct. FM 1108 and 652, on 652), from which **1** and **2** were isolated, and *N. gracilis* I. M. Johnston (*Bacon and Hartman 1335* collected from Mexico: San Luis Potosi: gypsum plain W of Hwy. 57, 3.5 mi N of Matehuala), from which **3** was isolated, are on deposit in the Univ. of Texas Herbarium (TEX).

Air-dried, ground leaf material (600 g for *N. linearifolia*, 250 g for *N. gracilis*) was extracted at room temp, 1 litre, 24 hr × 2,

with CHCl_3 and 1 l., 24 hr \times 2 with 85% aqueous MeOH . The CHCl_3 extracts contained no flavonoids and were discarded. The aqueous MeOH extracts were concentrated to 200 ml; this solution was extracted in each case with EtOAc , 500 ml \times 5. The EtOAc extracts were evaporated to dryness. For each extract the residue was dissolved in MeOH , and the soln was applied as narrow bands on paper (Whatman 3 MM). The chromatograms were developed one-dimensionally in 15% HOAc for 5 hr. The lowermost band was cut from the paper and eluted 2 \times 24 hr with MeOH . The eluate was concentrated and applied to a small column (i.d. 2.5 cm) packed with 10 g of polyamide (Polyclar AT). Elution was accomplished with $\text{CHCl}_3\text{-MeOH}$ (2:1). The concentrate from *N. linearifolia* gave two well separated bands, detected by UV light (366 nm) during the column chromatography; the first band gave **2** (30 mg) while the second gave **1** (20 mg). The concentrate from *N. gracilis* yielded only **3** (8 mg).

Sugar identification utilized a stainless steel column 3 m \times 3 mm (i.d.) packed with 80-100 mesh 3% SE 30 on chromosorb G installed in a Varian 600 D gas chromatograph having a flow rate of 25 ml of He/min (measured at the detector end of the column) and an isothermal oven temperature of 180°. The disaccharide released after H_2O_2 oxidation was co-chromatographed with authentic neohesperidose (prepared from natural naringenin 7-O-neohesperidoside) in four solvents; co-electrophoresis of the sugars was accomplished on paper in borate buffer pH 10 at 15 V/cm for 6 hr. All sugars were identical with neohesperidose. All other procedures were those as outlined in Mabry *et al.* [3].

Quercetin 3-O-neohesperidoside 1. Color test: purple (UV) to yellow-brown (UV/ NH_3); R_f s: TBA 0.54, HOAc 0.78, UV, λ_{max} (nm): MeOH , 354, 296sh, 266sh, 255; NaOMe , 401, 325

* Values are given in ppm (δ scale) relative to TMS as internal standard; spectra were recorded for trimethylsilyl ethers.

272; AlCl_3 , 436, 302sh, 275; $\text{AlCl}_3\text{-HCl}$, 401, 360, 296sh, 270; NaOAc , 386, 322, 272; $\text{NaOAc-H}_3\text{BO}_3$, 374, 308sh, 259. NMR* (CCl_4): 0.83 (*d*, J 6.0, 3 H, rhamnosyl Me), 3.65 (*c*, 10 H, sugar protons), 4.81 (*t*, 1 H, rhamnosyl H-1), 5.75 (1 H, glucosyl H-1), 6.25 (*d*, J 2.5, 1 H, H_6), 6.42 (*d*, J 2.5, 1 H, H_8), 6.83 (*d*, J 8.5, 1 H, H_5), 7.72 (*d*, J 8.5, 2 H, H_2 and H_6).

Kaempferol 3-O-neohesperidoside 2. Color test: purple (UV) to green brown (UV/ NH_3); R_f s: TBA 0.70, HOAc 0.79; UV, λ_{max} (nm): MeOH , 348, 298sh, 265; NaOMe , 394, 324, 274; AlCl_3 , 398, 351, 304, 274; $\text{AlCl}_3\text{-HCl}$, 397, 344, 301, 275; NaOAc , 380, 306, 273; $\text{NaOAc-H}_3\text{BO}_3$, 350, 315sh, 266. NMR* (CCl_4): 0.85 (*d*, J 6.0, 3 H, rhamnosyl CH_3), 3.65 (*c*, 10 H, sugar protons), 4.83 (1 H, rhamnosyl H-1), 5.75 (1 H, glucosyl H-1), 6.12 (*d*, J 2.5, 1 H, H_6), 6.45 (*d*, J 2.5, 1 H, H_8), 6.85 (*d*, J 9, 2 H, H_2 and H_6), 8.10 (*d*, J 9, 2 H, H_2 and H_6).

Isorhamnetin 3-O-neohesperidoside 3. Color test: purple (UV) to yellow-brown (UV/ NH_3); R_f s: TBA 0.57, HOAc 0.81, UV, λ_{max} (nm): MeOH , 350, 300sh, 268sh, 252; NaOMe , 406, 326, 273; AlCl_3 , 403, 365sh, 303, 270; $\text{AlCl}_3\text{-HCl}$, 400, 356, 302, 270; NaOAc , 376, 318, 274; $\text{NaOAc-H}_3\text{BO}_3$, 353, 302sh, 263sh, 252.

Acknowledgements—This work was supported by the National Science Foundation (Grant GB-29576X) and the Robert A. Welch Foundation (Grant F-130).

REFERENCES

1. Williams, C. A., Harborne, J. B. and Clifford, H. T. (1971) *Phytochemistry* **10**, 1059.
2. Vancraenenbroeck, R., Callewaert, W., Gorissen, H. and Lontie, R. (1969) *Europ. Brew. Conv., Proc. 12th Congr. Interlaken*, p. 29, Elsevier, Amsterdam.
3. Mabry, T. J., Markham, K. R. and Thomas, M. B. (1970) *The Systematic Identification of Flavonoids*, Springer, Heidelberg.

Phytochemistry, 1975, Vol. 14, pp. 296-297. Pergamon Press. Printed in England.

PENTACYCLIC TRITERPENES AND TYPICAL STEROL PRECURSORS IN *CUCUMIS SATIVUS* SEEDLINGS

P. K. KINTIA* and Z. A. WOJCIECHOWSKI

Department of Biochemistry, University of Warsaw, 02-089 Warsaw, Al. \dot{Z} wirki i Wigury 93, Poland

(Received 3 June 1974)

Key Word Index—*Cucumis sativus*; Cucurbitaceae; 4-monomethylsterols; 4,4-dimethylsterols; β - and α -amyrin.

Previous work on triterpenoids. 4-desmethylsterols (mainly stigmasta-7,22,25-trien-3 β -ol and stigmasta-7,25-dien-3 β -ol) in seeds [1] and seedlings [2]; cucurbitacins B and C in seedlings [3].

We decided to examine the fraction of sterol precursors of *C. sativus*, since it had been suggested that a different sequence of intermediates may be involved in the biosynthesis of Δ^{25} -sterols than for typical phytosterols such as sitosterol or stigmasterol [4]. A possible role of parkeol (an isomer of cycloartenol) as a biogenetic precursor of cucurbitacins had been considered [5].

* On leave from the Institute of Organic Chemistry, Moldavian Academy of Science, Kishiniev, U.S.S.R.